Wednesday, December 28, 2011

Cell Membrane Structure

The cell membrane structure consist of a double layer of lipid molecules in which proteins are embedded. The major membrane lipids are phospholipids. These are amphipathic molecules: one end has a charged region, and the remainder of the molecule, which consists of two long fatty acid chains, is nonpolar. The phospholipids in cell membranes are organized into a bimolecular layer with the nonpolar fatty acid chains in the middle. The polar regions of the phospholipids are oriented toward the surfaces of the membrane as a result of their attraction to the polar water molecules in the extracellular fluid and cytosol. No chemical bonds link the phospholipids to each other or to the membrane proteins, and therefore, each molecule is free to move independently of the others. This results in considerable random lateral movement of both membrane lipids and proteins parallel to the surfaces of the bilayer. In addition, the long fatty acid chains can bend and wiggle back and forth. Thus, the lipid bilayer has the characteristics of a fluid, much like a thin layer of oil on a water surface, and this makes the membrane quite flexible. This flexibility, along with the fact that cells are filled with fluid, allows cells to undergo considerable changes in shape without disruption of their structural integrity. Like a piece of cloth, membranes can be bent and folded but cannot be stretched without being torn.

The plasma membrane also contains cholesterol (about one molecule of cholesterol for each molecule of phospholipid), whereas intracellular membranes contain very little cholesterol. Cholesterol, a steroid, is slightly amphipathic because of a single polar hydroxyl group on its nonpolar ring structure. Therefore, cholesterol, like the phospholipids, is inserted into the lipid bilayer with its polar region at a bilayer surface and its nonpolar rings in the interior in association with the fatty acid chains. Cholesterol associates with certain classes of plasma membrane phospholipids and proteins, forming organized clusters that function in the pinching off of portions of the plasma membrane to form vesicles that deliver their contents to various intracellular organelles. There are two classes of membrane proteins: integral and peripheral. Integral membrane proteins are closely associated with the membrane lipids and cannot be extracted from the membrane without disrupting the lipid bilayer. Like the phospholipids, the integral proteins are amphipathic, having polar amino acid side chains in one region of the molecule and nonpolar side chains clustered together in a separate region. Because they are amphipathic, integral proteins are arranged in the membrane with the same orientation as amphipathic lipids—the polar regions are at the surfaces in association with polar water molecules, and the nonpolar regions are in the interior in association with nonpolar fatty acid chains. Like the membrane lipids, many of the integral proteins can move laterally in the plane of the membrane, but others are immobilized because they are linked to a network of peripheral proteins located primarily at the cytosolic surface of the membrane.

Most integral proteins span the entire membrane and are referred to as transmembrane proteins. Most of these transmembrane proteins cross the lipid bilayer several times. These proteins have polar regions connected by nonpolar segments that associate with the nonpolar regions of the lipids in the membrane interior. The polar regions of transmembrane proteins may extend far beyond the surfaces of the lipid bilayer. Some transmembrane proteins form channels through which ions or water can cross the membrane, whereas others are associated with the transmission of chemical signals across the membrane or the anchoring of extracellular and intracellular protein filaments to the plasma membrane. Peripheral membrane proteins are not amphipathic and do not associate with the nonpolar regions of the lipids in the interior of the membrane. They are located at the membrane surface where they are bound to the polar regions of the integral membrane proteins. Most of the peripheral proteins are on the cytosolic surface of the plasma membrane where they are associated with cytoskeletal elements that influence cell shape and motility.